博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Zookeeper概述安装及实操
阅读量:3959 次
发布时间:2019-05-24

本文共 8880 字,大约阅读时间需要 29 分钟。

第1章 Zookeeper概述

1.1 概述

Zookeeper是一个基于观察者模式设计的分布式服务管理框架,既能出处数据,又可以对数据的状态变化时,及时作出响应。

它负责存储和管理数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应,实现集群中类似Master/Slave管理模式

Zookeeper=文件系统(可以在zk上存储数据)+通知机制

1.2 特点

1)Zookeeper:一个领导者(leader),多个跟随者(follower)组成的集群。

2)Leader负责进行投票的发起和决议,更新系统状态

3)Follower用于接收客户请求并向客户端返回结果,在选举Leader过程中参与投票

4)集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。

5)全局数据一致:每个server保存一份相同的数据副本,client无论连接到哪个server,数据都是一致的。

6)更新请求顺序进行,来自同一个client的更新请求按其发送顺序依次执行。

7)数据更新原子性,一次数据更新要么成功,要么失败。

8)实时性,在一定时间范围内,client能读到最新数据。

1.3 数据结构

ZooKeeper的数据模型是树状的

ZooKeeper数据模型的结构与Unix文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。

 很显然zookeeper集群自身维护了一套数据结构。这个存储结构是一个树形结构,其上的每一个节点,我们称之为"znode",每一个znode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识,如图1所示

1.4 应用场景

提供的服务包括:分布式消息同步和协调机制、服务器节点统一配置管理、负载均衡、集群管理等,如图2,3,4所示。

第2章 Zookeeper安装

2.1 下载地址

1.官网首页:

https://zookeeper.apache.org/

2.下载截图,如图所示

2.1 分布式安装部署

1.集群规划

在hadoop101、hadoop102和hadoop103三个节点上部署Zookeeper。

2.解压安装

1)解压zookeeper安装包到/opt/module/目录下

[root@hadoop101 software]$ tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/

(2)在/opt/module/zookeeper-3.4.10/这个目录下创建zkData

mkdir -p zkData

(3)重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg

mv zoo_sample.cfg zoo.cfg

3.配置zoo.cfg文件

(1)修改配置

dataDir=/opt/module/zookeeper-3.4.10/zkData

         增加配置

server.1=hadoop101:2888:3888

server.2=hadoop102:2888:3888

server.3=hadoop103:2888:3888

(2)配置参数解读

server.A=B:C:D。

A是一个数字,表示这个是第几号服务器;

B是这个服务器的ip地址;

C是这个服务器与集群中的Leader服务器交换信息的端口;

D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。

4.集群操作

(1)在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件

touch myid

添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码

(2)编辑myid文件

vim myid

在文件中添加与server对应的编号:如1

(3)拷贝配置好的zookeeper到其他机器上

并分别修改myid文件中内容为2、3

(4)分别启动zookeeper

[root@hadoop101 zookeeper-3.4.10]# bin/zkServer.sh start

[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh start

[root@hadoop103 zookeeper-3.4.10]# bin/zkServer.sh start

(5)查看状态

[root@hadoop101 zookeeper-3.4.10]# bin/zkServer.sh status

JMX enabled by default

Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg

Mode: follower

[root@hadoop102 zookeeper-3.4.10]# bin/zkServer.sh status

JMX enabled by default

Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg

Mode: leader

[root@hadoop103 zookeeper-3.4.5]# bin/zkServer.sh status

JMX enabled by default

Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg

Mode: follower

第3章 Zookeeper内部原理

3.1 选举机制

1)半数机制:集群中半数以上机器存活,集群可用,否则集群处于瘫痪状态不可用。所以zookeeper适合装在奇数台机器上;

2 个机器的效果跟1个机器效果一样(机器挂掉的容忍度是一样的,要想工作,一个都不能挂)

3个机器最多容忍1个机器挂掉,4个机器最多容忍1个机器挂掉

2)Zookeeper虽然在配置文件中并没有指定master和slave。但是,zookeeper工作时,是有一个节点为leader,其他则为follower,Leader是通过内部的选举机制临时产生的

3)以一个简单的例子来说明整个选举的过程。

假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的。假设这些服务器依序启动,来看看会发生什么,如图8所示。

(1)服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态。

(2)服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1、2还是继续保持LOOKING状态。

(3)服务器3启动,根据前面的理论分析,服务器3成为服务器1、2、3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader。

(4)服务器4启动,根据前面的分析,理论上服务器4应该是服务器1、2、3、4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟。

(5)服务器5启动。

3.2 节点类型

1.Znode有两种类型

短暂(ephemeral):客户端和服务器端断开连接后,创建的节点自己删除

持久(persistent):客户端和服务器端断开连接后,创建的节点不删除

2.Znode有四种形式的目录节点(默认是persistent )

(1)持久化目录节点(PERSISTENT)

客户端与zookeeper断开连接后,该节点依旧存在

(2)持久化顺序编号目录节点(PERSISTENT_SEQUENTIAL)

客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号

(3)临时目录节点(EPHEMERAL)

客户端与zookeeper断开连接后,该节点被删除

(4)临时顺序编号目录节点(EPHEMERAL_SEQUENTIAL)

客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号,如图9所示

3.创建znode时设置顺序标识,znode名称后会附加一个值,顺序号是一个单调递增的计数器,由父节点维护

4.在分布式系统中,顺序号可以被用于为所有的事件进行全局排序,这样客户端可以通过顺序号推断事件的顺序

3.3 stat结构体

1)czxid- 引起这个znode创建的zxid,创建节点的事务的zxid

每次修改ZooKeeper状态都会收到一个zxid形式的时间戳,也就是ZooKeeper事务ID。

事务ID是ZooKeeper中所有修改总的次序。每个修改都有唯一的zxid,如果zxid1小于zxid2,那么zxid1在zxid2之前发生。

2)ctime - znode被创建的毫秒数(从1970年开始)

3)mzxid - znode最后更新的zxid

4)mtime - znode最后修改的毫秒数(从1970年开始)

5)pZxid-znode最后更新的子节点zxid

6)cversion - znode子节点变化号,znode子节点修改次数

7)dataversion - znode数据变化号

8)aclVersion - znode访问控制列表的变化号

9)ephemeralOwner- 如果是临时节点,这个是znode拥有者的session id。如果不是临时节点则是0。

10)dataLength- znode的数据长度

11)numChildren - znode子节点数量

3.4 监听器原理

1.监听原理详解,如图10所示

1)首先要有一个main()线程

2)在main线程中创建Zookeeper客户端,这时就会创建两个线程,一个负责网络连接通信(connect),一个负责监听(listener)。

3)通过connect线程将注册的监听事件发送给Zookeeper。

4)在Zookeeper的注册监听器列表中将注册的监听事件添加到列表中。

5)Zookeeper监听到有数据或路径变化,就会将这个消息发送给listener线程。

6)listener线程内部调用了process()方法。

创建ZooKeeper客户端private static String connectString = "hadoop101:2181,hadoop102:2181,hadoop103:2181";	private static int sessionTimeout = 2000;	private ZooKeeper zkClient = null;	@Before	public void init() throws Exception {	zkClient = new ZooKeeper(connectString, sessionTimeout, new Watcher() {			@Override			public void process(WatchedEvent event) {				// 收到事件通知后的回调函数(用户的业务逻辑)				System.out.println(event.getType() + "--" + event.getPath());				// 再次启动监听				try {					zkClient.getChildren("/", true);				} catch (Exception e) {					e.printStackTrace();				}			}		});	}

2.常见的监听

(1)监听节点数据的变化:

get path [watch]

(2)监听子节点增减的变化

ls path [watch]

3.5 写数据流程

ZooKeeper 的写数据流程主要分为以下几步:

1)比如 Client 向 ZooKeeper 的 Server1 上写数据,发送一个写请求。

2)如果Server1不是Leader,那么Server1 会把接受到的请求进一步转发给Leader,因为每个ZooKeeper的Server里面有一个是Leader。这个Leader 会将写请求广播给各个Server,比如Server1和Server2, 各个Server写成功后就会通知Leader。

3)当Leader收到大多数 Server 数据写成功了,那么就说明数据写成功了。如果这里三个节点的话,只要有两个节点数据写成功了,那么就认为数据写成功了。写成功之后,Leader会告诉Server1数据写成功了。

4)Server1会进一步通知 Client 数据写成功了,这时就认为整个写操作成功。ZooKeeper 整个写数据流程就是这样的。

第4章 Zookeeper实战

4.1 客户端命令行操作

命令基本语法

功能描述

help

显示所有操作命令

ls path [watch]

使用 ls 命令来查看当前znode中所包含的内容

ls2 path [watch]

查看当前节点数据并能看到更新次数等数据

create

普通创建

-s  含有序列

-e  临时(重启或者超时消失)

get path [watch]

获得节点的值

set

设置节点的具体值

stat

查看节点状态

delete

删除节点

rmr

递归删除节点

1.启动客户端

[root@hadoop101 zookeeper-3.4.10]$ bin/zkCli.sh

2.显示所有操作命令

[zk: localhost:2181(CONNECTED) 1] help

3.查看当前znode中所包含的内容

[zk: localhost:2181(CONNECTED) 0] ls /

[zookeeper]

4.查看当前节点数据并能看到更新次数等数据

[zk: localhost:2181(CONNECTED) 1] ls2 /

[zookeeper]

cZxid = 0x0

ctime = Thu Jan 01 08:00:00 CST 1970

mZxid = 0x0

mtime = Thu Jan 01 08:00:00 CST 1970

pZxid = 0x0

cversion = -1

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 0

numChildren = 1

5.创建普通节点

[zk: localhost:2181(CONNECTED) 2] create /app1 "hello app1"

Created /app1

[zk: localhost:2181(CONNECTED) 4] create /app1/server101 "192.168.1.101"

Created /app1/server101

6.获得节点的值

[zk: localhost:2181(CONNECTED) 6] get /app1

hello app1

cZxid = 0x20000000a

ctime = Mon Jul 17 16:08:35 CST 2017

mZxid = 0x20000000a

mtime = Mon Jul 17 16:08:35 CST 2017

pZxid = 0x20000000b

cversion = 1

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 10

numChildren = 1

[zk: localhost:2181(CONNECTED) 8] get /app1/server101

192.168.1.101

cZxid = 0x20000000b

ctime = Mon Jul 17 16:11:04 CST 2017

mZxid = 0x20000000b

mtime = Mon Jul 17 16:11:04 CST 2017

pZxid = 0x20000000b

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 13

numChildren = 0

7.创建短暂节点

[zk: localhost:2181(CONNECTED) 9] create -e /app-emphemeral 8888

(1)在当前客户端是能查看到的

[zk: localhost:2181(CONNECTED) 10] ls /

[app1, app-emphemeral, zookeeper]

(2)退出当前客户端然后再重启客户端

[zk: localhost:2181(CONNECTED) 12] quit

[bigdata@hadoop104 zookeeper-3.4.10]$ bin/zkCli.sh

(3)再次查看根目录下短暂节点已经删除

[zk: localhost:2181(CONNECTED) 0] ls /

[app1, zookeeper]

8.创建带序号的节点

(1)先创建一个普通的根节点app2

[zk: localhost:2181(CONNECTED) 11] create /app2 "app2"

(2)创建带序号的节点

[zk: localhost:2181(CONNECTED) 13] create -s /app2/aa 888

Created /app2/aa0000000000

[zk: localhost:2181(CONNECTED) 14] create -s /app2/bb 888

Created /app2/bb0000000001

[zk: localhost:2181(CONNECTED) 15] create -s /app2/cc 888

Created /app2/cc0000000002

如果原节点下有1个节点,则再排序时从1开始,以此类推。

[zk: localhost:2181(CONNECTED) 16] create -s /app1/aa 888

Created /app1/aa0000000001

9.修改节点数据值

[zk: localhost:2181(CONNECTED) 2] set /app1 999

10.节点的值变化监听

(1)在103主机上注册监听/app1节点数据变化

[zk: localhost:2181(CONNECTED) 26] get /app1 watch

(2)在102主机上修改/app1节点的数据

[zk: localhost:2181(CONNECTED) 5] set /app1  777

(3)观察103主机收到数据变化的监听

WATCHER::

WatchedEvent state:SyncConnected type:NodeDataChanged path:/app1

11.节点的子节点变化监听(路径变化)

(1)在103主机上注册监听/app1节点的子节点变化

[zk: localhost:2181(CONNECTED) 1] ls /app1 watch

[aa0000000001, server101]

(2)在102主机/app1节点上创建子节点

[zk: localhost:2181(CONNECTED) 6] create /app1/bb 666

Created /app1/bb

(3)观察103主机收到子节点变化的监听

WATCHER::

WatchedEvent state:SyncConnected type:NodeChildrenChanged path:/app1

12.删除节点

[zk: localhost:2181(CONNECTED) 4] delete /app1/bb

13.递归删除节点

[zk: localhost:2181(CONNECTED) 7] rmr /app2

14.查看节点状态

[zk: localhost:2181(CONNECTED) 12] stat /app1

cZxid = 0x20000000a

ctime = Mon Jul 17 16:08:35 CST 2017

mZxid = 0x200000018

mtime = Mon Jul 17 16:54:38 CST 2017

pZxid = 0x20000001c

cversion = 4

dataVersion = 2

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 3

numChildren = 2

转载地址:http://qsazi.baihongyu.com/

你可能感兴趣的文章
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Android 下 JNI 开发
查看>>
Mysql索引
查看>>
OGNL投影查询
查看>>
OGNL投影查询
查看>>
OGNL投影查询
查看>>
Redis之RDB和AOF持久化
查看>>
Redis之RDB和AOF持久化
查看>>
Servlet3.0
查看>>
Servlet3.0
查看>>